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Uniqueness of the phase problem in macromolecular crystallography, and its

relationship to the case of single particle imaging, is considered. The

crystallographic problem is characterized by a constraint ratio that depends

only on the size and symmetry of the molecule and the unit cell. The results are

used to evaluate the effect of various real-space constraints. The case of an

unknown molecular envelope is considered in detail. The results indicate the

quite wide circumstances under which ab initio phasing should be possible.

1. Introduction

The phase problem is of key importance in macromolecular

crystallography, and phase determination can be a limiting

step in protein structure determination. In the absence of the

applicability of direct methods (due to the large number of

atoms and the moderate resolution of the diffraction data),

information in addition to the structure-factor amplitudes is

required to retrieve the phases (Drenth, 1994). For example,

additional experimental diffraction data, such as from modi-

fied crystals or from anomalous dispersion, or knowledge of a

known related structure provide phase information. Alter-

natively, or as well as, a priori real-space information [such as

generic properties of protein electron densities, or non-

crystallographic symmetry (NCS)] also constrains the phases.

In this article we consider the case of ab initio phasing using

real-space information, in the absence of any experimental

phase information. A question of theoretical and practical

importance in this case is: to what extent does real-space

information constrain the phases and, importantly, what real-

space information is sufficient to render the solution to the

phase problem unique? Ab initio phasing in protein crystal-

lography has so far met with limited success, current methods

being based on direct methods utilizing random placement of

atoms or secondary structure fragments, and which are

generally applicable only to small proteins with reasonably

high resolution diffraction data (Sheldrick et al., 2011; Millán

et al., 2015). However, approaches based on iterative projec-

tion algorithms (Elser, 2003a; Marchesini, 2007; Millane & Lo,

2013) have recently shown considerable promise (Liu et al.,

2012; He & Su, 2015; Lo et al., 2015), and these results prompt

a more definitive analysis of the uniqueness question in

macromolecular crystallography.

Crowther (1969) and Bricogne (1974) considered the effect

of structural redundancy on constraining the phases in terms

of the number of observations and the number of parameters

describing the electron density of the subunit from which the

electron density in the unit cell is built. Millane (1993) gave a

quantitative assessment of uniqueness for macromolecular
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crystallography as a function of the shape of the molecular

envelope and the order of any NCS present. The results of

Miao et al. (1998) indicated that, for a ‘full’ unit cell, the

structure amplitudes alone underdetermine the phase

problem by a factor of a half.

The phase problem for a single, isolated object has been

considered separately in the literature. It has been shown that

the phase problem for a single object in two or more dimen-

sions has a unique solution (Fienup, 1978; Bruck & Sodin,

1979; Bates, 1984; Barakat & Newsam, 1984; Millane, 1990).

This was considered further by Millane (1996) who showed

that the problem is better determined as the number of

dimensions is increased. Elser & Millane (2008) characterized

the nature of the problem by defining a ‘constraint ratio’, and

showed that this can be expressed as a function of only the

object shape.

In this paper we make connections between uniqueness

properties of the phase problem for single objects and for a

crystal. We obtain an expression for the constraint ratio for

crystals that allows the effect of different real-space

constraints to be evaluated. This expression is applied to the

cases of a restricted molecular envelope, and crystallographic

and non-crystallographic symmetry. The case of an unknown

molecular envelope is considered in detail. The results assist in

understanding the nature of the macromolecular crystal-

lographic phase problem and the potential for ab initio

phasing.

2. Uniqueness for a single object

Consider first the phase problem for a single, isolated object,

as in, for example, single particle imaging or astronomy etc. In

this case, the Fourier amplitude is measured continuously in

Fourier, or reciprocal, space, i.e. there is no Bragg sampling. It

is well known that in this case, as long as the object is in two or

more dimensions, the solution to the phase problem is unique

(Fienup, 1978; Bruck & Sodin, 1979; Bates, 1984; Barakat &

Newsam, 1984). Uniqueness can be characterized by the

constraint ratio, denoted �, which is equal to the number of

independent data contained in the amplitude data divided by

the number of parameters describing the object (at the reso-

lution of the data) (Elser & Millane, 2008). Note that the

number of data cannot be increased indefinitely by finer

sampling of the amplitude, since the number of independent

data is limited by the sampling theorem. The constraint ratio

can be expressed in the form (Elser & Millane, 2008)

� ¼
jAj

2jSj
; ð1Þ

where S denotes the support of the object (i.e. the region

occupied by the object), A denotes the support of the auto-

correlation of the object (or of S), and j � j denotes the volume.

The phase problem is well determined if �> 1, � ¼ 1 is the

marginal case where multiple solutions exist but a small

amount of a priori information will restore uniqueness, and for

�< 1 the problem is not unique and a multitude of solutions

will exist that are consistent with the data. It is easily shown

that for three-dimensional objects, � � 4, and that for a three-

dimensional, convex, centrosymmetric support (such as a

cuboid or a three-dimensional parallelepiped), � ¼ 4.

Therefore, the phase problem in the latter case is over-

determined by a factor four.

Note that for a real valued object, the autocorrelation is

centrosymmetric and so the number of independent amplitude

data is proportional to jAj=2 and the number of object para-

meters is proportional to jSj. For a complex object, the

number of data is proportional to jAj and the number of

object parameters (real and imaginary parts) is proportional

to 2jSj. The constraint ratio is given by equation (1) in both

cases, and there is no distinction between real and complex

objects.

The constraint ratio is based on the relative number of data

and parameters, so that, since the problem is nonlinear, the

condition �> 1 does not completely exclude multiple solu-

tions in all cases. However, counter-examples exist only in

contrived cases that are unlikely to arise in practice, and occur

with probability zero [see Barakat & Newsam (1984) and x2 of

Millane & Chen (2015) for more information].

It is useful to consider uniqueness for the phase problem for

a single object in the following way. Consider, for simplicity, a

real object of M �M �M samples (or grid points), with a

total of Q ¼ M3 samples. This is easily extended to other

object shapes and to complex objects. Denote the sample

values of the object function by �1; �2; . . . ; �Q, and represent

the object by the vector n ¼ ð�1; �2; . . . ; �QÞ in the Q-dimen-

sional vector space RQ. The autocorrelation of the object is

discrete with 2M � 2M � 2M samples (for large M), and has

4Q independent sample values (since it is centrosymmetric),

and this is therefore the number of independent Fourier

amplitude data. Each Fourier amplitude datum describes a

constraint on n. If we order the data, the first datum reduces n
from belonging to RQ to belonging to a subspace of RQ of

dimension Q� 1. The next datum further constrains n to

belong to a subspace of dimension Q� 2. Continuing in this

way, after Q data are included, the solution n is reduced to

belonging to a subspace of dimension 0, i.e. a point set in RQ.

The structure of each subspace will be highly complex, both

geometrically and topologically, but if the Q Fourier amplitude

data are independent, then the dimensionality reduction will

occur as described. Adding one more independent amplitude

datum will select out one of the (many) points in the point set

as the correct (unique) solution. Since there are 4Q inde-

pendent data and only Qþ 1 are required, there is a data

excess of 3Q� 1, and uniqueness is established. The ratio of

the number of data available to that required is 4� � where �
is small and is O(Q�1). This corresponds to the constraint ratio

� ¼ 4 for the three-dimensional cuboid case and the

requirement �> 1 for uniqueness.

3. Uniqueness for a crystal

We now extend the above ideas to the case of crystalline

objects. Consider first a finite crystal (object) of N � N � N

unit cells. The volume of the object is jSNj ¼ N3V, where SN is
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the support of the crystal and V is the volume of the unit cell.

Since all the unit cells are the same, the number of indepen-

dent object parameters is proportional to jSNj=N3 ¼ V. The

normalized autocorrelation of the crystal, ANðxÞ, where x

denotes position in real space, can be written as

ANðxÞ ¼
1

N3

XN�1

m¼�ðN�1Þ

ðN � jm1jÞðN � jm2jÞðN � jm3jÞ

� Aðx�mKÞ; ð2Þ

where m ¼ ðm1;m2;m3Þ, the matrix K ¼ ðajbjcÞT, where

ða; b; cÞ are the unit-cell vectors, i.e. the rows of K are the unit-

cell vectors, N ¼ ðN;N;NÞ, and AðxÞ is the autocorrelation of

a single unit cell. This is illustrated for one dimension for

N ¼ 3 in Fig. 1. The volume of the support of the auto-

correlation of the crystal is jANj ¼ 8N3V. However, as a result

of equation (2), not all sample values of the autocorrelation

are independent. Inspection of Fig. 1, and the extension to

three dimensions, shows that the whole of AðxÞ can be

determined from information on the boundary of ANðxÞ, so

that in three dimensions the volume of the autocorrelation

that contains independent data is 8V. Therefore, substituting

into equation (1), the constraint ratio for the finite crystal is

�N ¼ 8V=2V ¼ 4. The result is therefore the same as for a

single object, as expected, and in principle the whole finite

crystal could be reconstructed from a measurement of its

continuous diffracted intensity. In practice, however, for all

but very small crystals (small N), it would be difficult to

measure the continuous diffracted amplitude between the

Bragg reflections, due to its small values in these regions.

For a realistic crystal, N is large and we have to consider the

limit N!1. The autocorrelation ANðxÞ then extends to

infinity and reduces to the Patterson function PðxÞ, i.e.

lim
N!1

ANðxÞ ¼
P1

m¼�1

Aðx�mKÞ ¼ PðxÞ; ð3Þ

which is illustrated for one dimension in Fig. 1(b). The

boundary region of ANðxÞ is now not accessible, and all that is

available is PðxÞ, which is periodic with a period that has

volume V. Therefore, for a crystal, the number of data is

proportional to V, and the constraint ratio, denoted �c, is

�c ¼
V

2V
¼

1

2
: ð4Þ

The crystallographic phase problem is therefore highly

underdetermined in the absence of any additional constraints.

If additional real-space information is available, the degrees

of freedom in, or the unique region of, the unit cell and the

Patterson will be modified, and the constraint ratio can be

written as

�c ¼
jPuj

jUuj
; ð5Þ

where Uu and Pu denote the unique region of the unit cell and

of the Patterson, respectively. Note that the 2 in the denomi-

nator of equation (1) is now absorbed into jPuj since Pu is

always centrosymmetric. Equation (5) gives the constraint

ratio for a crystal, and is a function of only the shape and

symmetry of the molecule and the unit cell (since Uu can be

calculated from this information, and Pu can be calculated

from Uu). The constraint ratio [equation (5)] can be used to

characterize the uniqueness of the crystallographic phase

problem and the effects of different kinds of real-space

information.

4. Real-space constraints

Here we evaluate the constraint ratio for three kinds of real-

space constraint: (i) a molecular envelope (i.e. the support of

the molecule), (ii) crystallographic symmetry and (iii) non-

crystallographic symmetry. We also consider the cases when

the molecular envelope is known and when it is unknown, a

priori.

4.1. Known molecular envelope

Consider the case where the molecule does not occupy all of

the unit cell, which is essentially always the case in protein

crystallography. We consider first the case where the mol-

ecular envelope is known a priori, and the case where it is not

known is considered in the next section. The shape of the

envelope can sometimes be obtained from experimental

techniques such as solution scattering, electron microscopy or

solvent contrast variation (Hao, 2006; Carter et al., 1990; Lo et

al., 2009). If the shape of the molecular envelope is known,

and assuming it can be positioned in the unit cell, then the
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Figure 1
(a) The weighted autocorrelations of a single unit cell (solid lines) that
make up the autocorrelation of a one-dimensional crystal with N ¼ 3 unit
cells (dashed line) as in equation (2). (b) The Patterson function (dashed
line) for an infinite crystal that is made up of an infinite number of equally
weighted autocorrelations of a single unit cell (solid lines).



number of unknowns is proportional to its volume, i.e.

jUuj ¼ pV, where p is the fraction of the unit cell occupied by

the molecule. Since a restricted molecular support (envelope)

gives rise to a restricted autocorrelation support, we need to

consider the possibility that the Patterson function does not

occupy the whole of the unit cell, reducing the size of its

unique region to less than V=2. Let jPuj ¼ qV=2, where q

denotes the proportion of the unit cell that is occupied by the

Patterson, and substitution into equation (5) gives

�c ¼
q

2p
: ð6Þ

Since macromolecules must pack in a crystal in such a way that

they make contacts with molecules in adjacent unit cells, they

must occupy the unit cell in a fairly homogeneous manner. The

result is that it is unlikely that the autocorrelation (of a single

molecule) will not occupy all of the unit cell. It is even more

unlikely that the Patterson will not occupy all of the unit cell.

This is illustrated in Fig. 2. In almost all cases then, q ¼ 1 and

equation (6) reduces to

�c ¼
1

2p
¼

1

2ð1� sÞ
; ð7Þ

where s is the solvent content of the crystal. The constraint

ratio then increases with increasing solvent content, as

expected, and uniqueness (�c < 1) requires that p< 0:5, i.e. a

protein content of less than 50%, or a solvent content of

greater than 50%.

It is interesting to note that, since generally q ¼ 1, the

constraint ratio �c depends, as shown by equation (7), on only

the volume of the envelope, relative to that of the unit cell,

and not on its shape. This is in contrast to the single object case

where � depends on the shape of the object, rather than on its

volume.

4.2. Unknown molecular envelope

An important caveat of the previous section is that it

assumes that the molecular envelope is known. Referring to

the discussion in x2, use of the number of object variables in

the constraint ratio definition implicitly assumes that it is

known, at least for reconstruction purposes, what those vari-

ables are. This is not the case if the envelope is unknown, since

it is not known which samples (grid points) are inside the

envelope. However, in many cases in protein crystallography,

the envelope shape may be unknown, but the protein envelope

(or solvent) volume can be estimated (Weichenberger &

Rupp, 2014). Here we consider the case where the volume of

the protein envelope, rather than the envelope itself, is known.

Consider a unit cell of M �M �M samples, with a total of

Q ¼ M3 samples, and known protein content p, so that the

protein is known to occupy P ¼ pQ samples. The location of

these P samples is unknown, however. Considering the

formulation of the problem described in x2, the point is that

with an unknown envelope, the molecule cannot be repre-

sented as a point n in RP, because we don’t know the vector-

space coordinates that generate RP. All we know is that the

molecule is in the unit cell, so we need to represent it as a

vector in the Q-dimensional space RQ. The problem then is

that there are only Q=2 amplitude data and solution to the

phase problem is not unique.

However, if it is known that the object occupies only P

samples, then for a particular envelope, n is in a P-dimensional

hyperplane in RQ (i.e. with the other Q� P sample values

fixed at zero). Furthermore, there are only a finite number of

possible envelopes, i.e. there is a finite number of ways of

selecting P samples from the Q samples. Under these condi-

tions then, the object belongs to a P-dimensional subspace, or

manifold, in RQ, that is the union of QCP P-dimensional

hyperplanes (where QCP denotes the number of combina-

tions). Starting with this manifold and applying the dimen-

sionality reduction argument in x2, the solution will again be

reduced to a point set in this manifold with P data. Again, an

additional datum will likely select out the correct solution

from this point set. The number of independent data is Q=2, so

uniqueness requires that Q=2>P ¼ pQ, or p< 0:5, i.e. a

protein content less than 50%, or a solvent content greater

than 50%. The result is therefore the same as for a known

envelope, and the constraint ratio is still given by equation (7).

Since the solution manifold is larger than RP, the size of

the point set may be larger than for the known envelope case,

but there is still a data excess of ð12� pÞQ� 1 when p< 1=2.

We therefore conclude that the solution to the crystal-

lographic phase problem with only knowledge that the crystal

protein content, or volume, is less than 50% of the unit cell, is

also unique.

Uniqueness for the case of an unknown envelope was also

investigated numerically by simulation. The idea is that since if

there are multiple solutions to the problem there will be many
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Figure 2
(a) A molecular envelope (left) and its corresponding autocorrelation
(right) that fills the unit cell. (b) A molecular envelope (left) and one
period of its corresponding Patterson function (right) that does not fill the
unit cell. The case (b) requires an extremely tenuous and low-occupancy
molecule, that is unlikely to occur in practice.



such solutions, an effective reconstruction algorithm will find

one of those solutions rather easily. Iterative projection

algorithms such as the difference map algorithm (Elser, 2003a)

are effective at finding solutions to non-convex problems of

this kind. By setting up such an algorithm with the appropriate

constraints, the nature of the solution space can be examined

by running the algorithm multiple times with different initial

conditions. If multiple runs of the algorithm either converge to

only the correct solution, or do not converge, then uniqueness

is strongly supported. If the problem is not unique, then the

algorithm will frequently converge rather quickly to an

incorrect solution.

The only difficulty with this approach in the present case is

that, while for the case of a known envelope the real-space

constraint set (a single hyperplane) is convex, for the case of

an unknown envelope the constraint set (a large number of

orthogonal hyperplanes) is highly non-convex. The presence

of this rather weak and highly non-convex constraint

substantially increases the difficulty of the reconstruction

problem, increasing the number of iterations required for

convergence, potentially to an impractically large value. This

necessitates simulations with small objects. On the other hand,

since we are interested here in uniqueness rather than

reconstruction, non-convergence is almost as informative as

convergence.

We used the difference map algorithm (Elser, 2003a), which

is an effective algorithm for phase retrieval, to study unique-

ness in this way. We used a two-dimensional unit cell for

convenience (the same behaviour is expected in three

dimensions since in the crystallographic case, �c is indepen-

dent of the dimensionality). In real space, the only constraints

applied are the size of the envelope (i.e. the number of non-

zero sample values) and positivity of the electron density. In

reciprocal space, the constraint is to match the structure

amplitudes of the true molecule. In addition to the usual

positivity and Fourier amplitude projections (Millane & Lo,

2013), the projection for the envelope size is easily shown to

consist of setting the Q� P smallest density values to zero and

leaving the other P values unchanged, at each iteration (Elser,

2003b).

A 29� 29 sample unit cell was used and a single square

‘molecule’ of various sizes was placed in the unit cell in P1 to

vary the protein (or solvent) content, and thus vary �c given

by equation (7). The reconstruction algorithm was run for 106

iterations, starting with ten different random molecules, for

each molecule size. For each run, the solution was taken as

that which gives the minimum mean-square error between the

resulting structure amplitudes and the data. With an unknown

support in P1, the structure amplitudes are insensitive to the

absolute position of the support, and convergence of the

algorithm can be slowed by ‘drifting’ of the support. There-

fore, the reconstruction was constrained to have its centre of

mass coincident with the centre of mass of the true molecule.

The results of the simulations are summarized in Table 1.

The table shows the number of runs that converged and the

number of correct reconstructions for the converged runs. For

the converged runs, the mean-square error in reciprocal space

approached very small values. The average number of itera-

tions required in the converged cases is also shown in the

table. Convergence was obtained for �c > 1:4 and �c < 0:8 in

less than 106 iterations. However, for 0:8<�c < 1:4 the

algorithm did not converge within 106 iterations. This is due to

the weak and highly non-convex real-space constraint, parti-

cularly for values of �c close to unity, as mentioned above.

Inspection of the table shows that in all cases for which �c > 1

(p< 0:5), the algorithm either converged to the correct solu-

tion (which therefore automatically had the correct envelope),

or it did not converge. In no cases did it converge to an

incorrect solution. This shows strong support for uniqueness in

the case �c > 1. For �c ¼ 0:73, multiple incorrect solutions

were easily found by the algorithm. This indicates that, indeed,

non-unique solutions are likely to be found if they exist.

It is interesting to consider the number of hyperplanes in

the solution set. For each envelope shape there are Q possible

positions of the envelope (including those that wrap around

the unit-cell edges), and these should be treated as redundant

since they all give the same Fourier amplitude. Therefore, the

number of envelope-position-independent hyperplanes,

denoted N hðp;QÞ, is

N hðp;QÞ ¼ Q�1 QCpQ: ð8Þ

For fixed Q, this quantity is a maximum at p ¼ 0:5. For typical

protein crystal solvent contents between 70 and 30% (i.e.

0:3< p< 0:7), which represents 95% of the entries in the PDB,

the dependence of N hðp;QÞ on p is weak, and N hðp;QÞ is

given approximately by (see Appendix A)

N hðp;QÞ ’ Q�3=2 2Q; p ’ 0:5: ð9Þ

The number of hyperplanes is therefore indeed large, but the

simulations show that the structure amplitude data are able to

select out the correct hyperplane corresponding to the solu-

tion, in spite of this large number. For example, although the

cases described above are for small objects, the number of

variables is about 103, and the number of hyperplanes is about

10250. This number of hyperplanes emphasizes the extreme

non-convexity of the real-space constraint set.

The algorithm described above is useful for investigating

uniqueness, but it is not a practical approach in protein crys-

tallography where the number of sample values is much larger

and many more iterations would be required. However, in

practice, more is known about protein envelopes. In particular,

protein envelopes are generally quite compact. This property

substantially reduces the number of possible envelopes and

the number of hyperplanes, significantly easing the recon-
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Table 1
Summary of simulation results.

Object size p �c

Runs
converged

Correct
solutions

Average
iterations for
convergence

15� 15 0.27 1.87 10/10 10/10 4� 104

16� 16 0.30 1.64 5/10 5/5 1� 105

17� 17 0.34 1.46 1/10 1/1 8� 105

24� 24 0.68 0.73 10/10 0/10 1� 104



struction problem. Supplementing the reconstruction algo-

rithm with additional compactness constraints through the use

of, for example, smoothing and shrinking of the support

(Wang, 1985; Marchesini et al., 2003) or other schemes (Lo et

al., 2009), should allow ab initio phasing without initial

envelope information for practical problems. Indeed, the

recent results of He & Su (2015) support this conclusion.

In summary then, even in cases where the molecular

envelope is not known a priori, the macromolecular crystal-

lographic phase problem has a unique solution if the protein

content of the crystal is less than 50%.

4.3. Crystallographic symmetry

Consider now the effect of crystallographic (space-group)

symmetry on the constraint ratio. For non-centric crystal-

lographic symmetry of order R, the Patterson function has

symmetry of order 2R (as illustrated in Fig. 3a). We then have

that jUuj ¼ V=R and jPuj ¼ V=2R, and substitution into

equation (5) gives

�c ¼ 1=2; ð10Þ

i.e. the same as for the case without symmetry. For centric

crystallographic symmetry of order R, the Patterson has

symmetry of order R (as illustrated in Fig. 3b). In this case,

jPuj ¼ V=R, and substitution into equation (5) gives

�c ¼ 1: ð11Þ

This is then the marginal case that corresponds to a countable

number of phase solutions (i.e. two choices for each reflection)

and only a small amount of additional a priori information is

required to render the solution unique. These results are

consistent with the well known fact that reduction in the

number of parameters due to the crystallographic symmetry is

exactly matched by the same number of relationships between

the structure amplitudes, and the overall data/parameter ratio

remains unchanged. Crystallographic symmetry does not

therefore constrain the phase problem, except in the centric

case which does not occur with biomolecules.

4.4. Non-crystallographic symmetry

Consider now NCS of order R. NCS does not lead to

increased symmetry in the Patterson function (see the illus-

tration in Fig. 3c), so that jUuj ¼ V=R and jPuj ¼ V=2, and

substitution into equation (5) gives

�c ¼ R=2: ð12Þ

The redundancy of the phase problem is therefore improved

by a factor R, and a unique solution is expected in principle if

R> 2. Therefore, as a result of equation (12), NCS is a

significant factor for ab initio phasing. This result coincides

with early considerations of the effect of NCS on constraining

the phases (Crowther, 1969; Bricogne, 1974), and is related to

the fact that NCS, unlike crystallographic symmetry, does not

lead to relationships between the structure-factor amplitudes,

and so the number of independent data is not reduced. An

alternative interpretation is that R-fold NCS leads to a denser

sampling, by a factor R, relative to the Bragg sampling, of the

continuous Fourier amplitude of the contents of the unit cell,

increasing the number of data by a factor R (Millane, 1990,

1993).

As with the case of a known molecular envelope, the above

analysis assumes that the NCS operators are known (so that

the number of electron-density parameters can be reduced by

a factor R). This problem is not so difficult, however, as the

order of the NCS can be determined from a self-rotation

function (Tong & Rossmann, 1997), although positioning of

the NCS origin in the unit cell can present difficulties.

NCS is always accompanied by a restricted molecular

envelope, and combining the above results gives

�c ¼
R

2p
ð13Þ

in the presence of both constraints. Therefore, with both

constraints, solution to the phase problem is expected to be

considerably eased. For example, with twofold NCS and 50%

solvent content, or with threefold NCS and 25% solvent

content, �c ¼ 2 and the problem is expected to be well

determined in practice.

research papers

Acta Cryst. (2015). A71, 592–598 Millane and Arnal � Uniqueness of the phase problem 597

Figure 3
Examples of two-dimensional unit cells (left) and one period of their
corresponding Patterson functions (right) for (a) non-centric pm
crystallographic symmetry, (b) centric p4 crystallographic symmetry
and (c) non-crystallographic threefold symmetry in plane group P1, as
described in the text. The corresponding Patterson symmetries are (a)
p2mm, (b) p4 and (c) p2.



5. Summary

The constraining power of real-space information in protein

crystallography is conveniently characterized by a constraint

ratio that can be calculated using equation (5). The constraint

ratio is useful in that it gives guidance on the likely success of

ab initio phasing. For example, recent results indicate that, as a

result of errors and missing data, a value of � greater than

about 1.5 might be needed for ab initio phasing in practice

(Liu et al., 2012; Millane & Lo, 2013). Equation (5) allows the

constraint value to be calculated for specific kinds of real-

space information in order to make this assessment.

For the case of protein content and NCS, the constraint

ratio is given by equation (13). Evaluation of this equation

suggests that, with the use of suitable reconstruction algo-

rithms, ab initio phasing should be feasible with quite modest

values of these parameters. Recent results using iterative

projection algorithms indicate that this is the case (Liu et al.,

2012; He & Su, 2015; Lo et al., 2015). NCS is a particularly

powerful constraint if incorporated into iterative projection

algorithms (Millane & Lo, 2013; Lo et al., 2015).

Although an estimate of the molecular envelope is desirable

if available, uniqueness does not depend on a priori knowl-

edge of the envelope, and envelope volume and compactness

are a powerful constraint. The recent results of He & Su

(2015) support this conclusion. Overall, these results indicate

that more comprehensive tests of the application of iterative

projection algorithms to phase retrieval in protein crystal-

lography are warranted.

APPENDIX A
The number of envelope-position-independent hyperplanes

N hðp;QÞ in RQ is given by equation (8). Since Q is large,

applying Stirling’s approximation to QCpQ gives

N hðp;QÞ ’
2

�

� �1=2
1

2½pð1� pÞ�1=2
Q�3=2 p�pð1� pÞ

p�1
� �Q

:

ð14Þ

For fixed Q,N hðp;QÞ is symmetric about p ¼ 0:5, where it is a

maximum. At p ¼ 0:5, equation (14) reduces to

N hð0:5;QÞ ’
2

�

� �1=2

Q�3=22Q: ð15Þ

For p close to 0.5, the dependence on p is fairly weak. For

example, for p ¼ 0:3, substitution into equation (14) gives

N hð0:3;QÞ ’
2

�

� �1=2

ð1:09ÞQ�3=2ð1:84ÞQ: ð16Þ

Therefore, noting that ð2=�Þ1=2
’ 0:8, for 0:3< p< 0:7,

N hðp;QÞ can be suitably approximated by

N hðp;QÞ ’ Q�3=22Q; 0:3< p< 0:7: ð17Þ

Acknowledgements

This work was supported by a James Cook Research Fellow-

ship and a Marsden grant to RPM, and a University of

Canterbury College of Engineering Doctoral Scholarship to

RDA.

References

Barakat, R. & Newsam, G. (1984). J. Math. Phys. 25, 3190–3193.
Bates, R. H. T. (1984). Comput. Vision Graph. Image Process. 25,

205–217.
Bricogne, G. (1974). Acta Cryst. A30, 395–405.
Bruck, Y. M. & Sodin, L. G. (1979). Opt. Commun. 30, 304–308.
Carter, C. W., Crumley, K. V., Coleman, D. E., Hage, F. & Bricogne, G.

(1990). Acta Cryst. A46, 57–68.
Crowther, R. A. (1969). Acta Cryst. B25, 2571–2580.
Drenth, S. (1994). Principles of Protein X-ray Crystallography. New

York: Springer-Verlag.
Elser, V. (2003a). J. Opt. Soc. Am. A, 20, 40–55.
Elser, V. (2003b). Acta Cryst. A59, 201–209.
Elser, V. & Millane, R. P. (2008). Acta Cryst. A64, 273–279.
Fienup, J. R. (1978). Opt. Lett. 3, 27–29.
Hao, Q. (2006). Acta Cryst. D62, 909–914.
He, H. & Su, W.-P. (2015). Acta Cryst. A71, 92–98.
Liu, Z.-C., Xu, R. & Dong, Y.-H. (2012). Acta Cryst. A68, 256–265.
Lo, V., Kingston, R. L. & Millane, R. P. (2009). Acta Cryst. A65, 312–

318.
Lo, V. L., Kingston, R. L. & Millane, R. P. (2015). Acta Cryst. A71,

451–459.
Marchesini, S. (2007). Rev. Sci. Instrum. 78, 011301.
Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A.,

Howells, M. R., Weierstall, U. & Spence, J. C. H. (2003). Phys. Rev.
B, 68, 140101.

Miao, J., Sayre, D. & Chapman, H. N. (1998). J. Opt. Soc. Am. A, 15,
1662–1669.

Millán, C., Sammito, M. & Usón, I. (2015). IUCrJ, 2, 95–105.
Millane, R. P. (1990). J. Opt. Soc. Am. A, 7, 394–411.
Millane, R. P. (1993). J. Opt. Soc. Am. A, 10, 1037–1045.
Millane, R. P. (1996). J. Opt. Soc. Am. A, 13, 725–734.
Millane, R. P. & Chen, J. P. J. (2015). J. Opt. Soc. Am. A, 32, 1317–

1329.
Millane, R. P. & Lo, V. L. (2013). Acta Cryst. A69, 517–527.
Sheldrick, G. M., Gilmore, C. J., Hauptman, H. A., Weeks, C. M.,

Miller, R. & Uson, I. (2011). International Tables for Crystal-
lography, Vol. F., edited by E. Arnold, D. M. Himmel & M. G.
Rossmann, pp. 413–429. Chichester: Wiley.

Tong, L. & Rossmann, M. G. (1997). Methods Enzymol. 276, 594–611.
Wang, B. C. (1985). Methods Enzymol. 115B, 90–112.
Weichenberger, C. X. & Rupp, B. (2014). Acta Cryst. D70, 1579–1588.

598 Millane and Arnal � Uniqueness of the phase problem Acta Cryst. (2015). A71, 592–598

research papers

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5091&bbid=BB29

